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EQUATIONS FOR ISENTROPIC AND PLAWE SHOCK
FLOWS OF MIXTURES OF UNDISSOCIATED
PLANETARY GASES
By Victor L. Peterson

Ames Research Center
Meffett Field, Calif.

SUMMARY

Equations for aerodynamic quantities of interest in equilibrium isen-
tropic one-dimensional flows and for properties across plane shock waves in
arbitrary mixtures of planetary gases are derived under the assumption that
the gases obey the perfect gas law. This assumption restricts the range of
applicability of the equations to conditions for which the onset of chemical
dissociation or ionization has not been reached although no requirement for
the gases to be calorically perfect is imposed. Analytic functions used to
specify the variation of specific heats with temperature are consistent with
the assumption that molecular vibrations behave like harmonic oscillators and
are independent of rotational degrees of freedom. Simplified equations giv-
ing approximate results over more limited ranges of the variables are also
presented.

Sample comparisons of the aerodynamic behavior of a number of pure gases
are made. It is shown that while some of the flow quantities characterizing
aerodynamic flows are very sensitive 1o gas composition, the stagnation pres-
sure coefficients for a number of gases differ by only a few percent from one
gas to another.

INTRODUCTTON

Considerable attention is now being directed toward the study of missions
involving flight in the atmospheres of planets other than earth. The chemical
compositions of the gases comprising these atmospheres are not known with any
degree of precision at the present time. However, the presence or absence of
certain constituents has been tentatively established for the near planets,
and in some cases, abundances have been estimated. TFor example, evidence
exists showing carbon dioxide to be present in the atmospheres of Mars and
Venus in considerably larger amounts than found in the earth's atmosphere
while methane and ammonia have been observed in the atmosphere of Jupiter.
Various other gases such as nitrogen, argon, helium, and hydrogen have been
considered as possible major constituents of planetary atmospheres. (See



reference 1 for a survey of information on planetary atmospheres.) Thus, a
number of gas mixtures considerably different from air are being assoclated
with other planet atmospheres.

In order to conduct analytical and experimental studies involving these
proposed planetary gas mixtures it is necessary to understand the basic flows
of these gases. Furthermore, if wind tunnels originally designed for opera-
tion with air are converted to operate with various planetary gas mixtures,
methods will be needed for relating aerodynamic performance in arbitrary gas
mixtures to that in air. Many of the proposed planetary gas mixtures are
unlike air in that they cannot be treated as perfect gases even at low temper-
atures. Therefore, individual tables of flow information, such as those pre-
sented in reference 2, have been computed for gas mixtures of interest. It is
certainly not practical to prepare tables of aerodynamic parameters for each
and every proposed atmospheric gas model so that the need for analytic methods
is clearly evident.

The present study is concerned with the development of equations for
aerodynamic quantities of interest in equilibrium one-dimensional isentropic
flows and adiabatic plane-shock flows for the ranges of conditions in which
the gases considered obey the gas law p = pRT. The results are, therefore,
generally applicable so long as the highest temperature in the flow does not
exceed about 2500° K. This restricts the flow speed to the order of 2 to L
km/sec or below for most gas mixtures. The equations are derived for arbi-
trary mixtures of monatomic gases such as helium and argon, linear molecule
polyatomic gases such as nitrogen and carbon dioxide, and nonlinear molecule
polyatomic gases not subject to internal rotation such as methane, ammonia,
and water vapor. All of the polyatomic gases are admitted to be calorically
imperfect with specific heats that vary with temperature. Within the frame-
work of the assumptions results are obtained which are exact over the per-
missible ranges of variables. Simplified approximate results applicable over
more limited ranges of the variables are also presented. The present results
that apply to real undissociated air may be compared to those in reference 3.
Unlike that study, however, specific heats are not restricted to vary in the
first order only from their ideal gas values.

SYMBOLS

a sound speed
A area of flow cross section
Cp specific heat per mole at constant pressure

specific heat per mole at constant volume

Cp £ pressure coefficient evaluated at stagnation conditions,
stag



u(T)

v(T)

w(T)

Naperian logarithm base
energy per mole

fractional differences between Tpl/pt, TTl/Tt’ Tpl/pt

Tpl/pt: TTl/Tt} Tpl/pt’ respectively

enthalpy per mole
molecular weight
Mach number
number of degrees of vibrational freedom
pressure
. . pVZ
dynemic pressure, —5—
R
gas constant, —
m
universal gas constant per mole
number of atoms in molecule
absolute temperature
function of temperature defined by equation (8)
function of temperature defined by equation (8)
speed
function of temperature defined by equation (15)
mole fraction
shock-wave angle measured from downstream flow direction
°p
ratic of specific heats, P
-
angle of flow deflection across an obligue shock wave
function defined by equation (22)

molecular vibrational energy constant

mass density

and



() ratio of ( ) for real gas to ( ) for ideal gas

( )V partial derivative at constant volume
(M asymptotic value of gquantity
Subscripts
i ideal-gas quantity
J,k,1 indices referring to monatomic gases, polyatomic linear molecule

gases, and polyatomic nonlinear molecule gases not subject to
internal rotation, respectively

n index denoting degree of vibrational freedom

t total conditions for gas brought isentropically to rest (wind-
tunnel reservoir conditions)

air air quantity

trans, rot{} translational, rotational, vibrational, and electronic energy

vib, el modes, respectively

* quantity evaluated at sonic conditions

1 conditions upstream of shock wave

2 conditions downstream of shock wave
ANATLYSTS

The analysis is divided into four sections: equations governing the
thermodynamics of the gas mixtures are developed in the first, the second
treats the one-dimensional isentropic flow situation, the third is devoted to
plane shock flows, and the last presents simplified approximate forms of the
equations. The equations presented only apply to mixtures of thermally
perfect undissociated gases.

Thermodynamic Properties

The thermodynamic properties of a mixture of gases can be calculated
from the thermodynamic properties of the individual components or species.
Thus, attention is first directed toward a general definition of the

L



necessary properties of an arbitrary pure gas. The ideas are then specialized
to gases having specific types of molecular structure. Finally, equations for
arbitrary mixtures of these gases are developed and a single equivalent gas is
defined which has the exact thermodynamic properties of the actual gas mixture
being considered.

General considerations.- The total energy possessed by a gas molecule can
be written generally as

E = BEtrans * Bint

where Egpgng denotes the energy of translation of the molecule and Eipt
denotes the energy associated with the internsl structure of the molecule.
The internal energy Eint can arise from three sources:

1. Eyot rotation of the molecule about its mass center

2. Evip vibration of the atoms in the molecule relative to
each other

3. Eey excitation of the electrons within the molecule

This study is restricted to gases for which these three phenomena can be
assumed, with gocd approximation, to be independent. Therefore,

E = Bypgne * Brot + Evip + Bel

The translational degrees of freedom are fully excited at all tempera-
tures and guantum mechanical considerations show the rotational degrees of
freedom to be fully excited at temperatures sbove a few degrees Kelvin. Thus,
values for E+rans and Erot are readily obtained by using the law of equi-
partition of energy which states that each fully excited classical degree of
freedom in a molecule contributes (l/Z)RT to the specific energy. The energy
assoclated with each degree of vibrational freedom in a molecule is determined
Tfrom quantum mechanical theory by considering the vibrations to behave like
harmonic oscillators. The energy in one degree of vibrational freedom is

given by [RT(G/T)]/(eQ/T - 1) where 6 is the characteristic temperature of
vibration. For a gas with N degrees of vibrational freedom

N
6,/T
Evyip = RT}Z T
n=1 © -1

Note that each fully excited degree of vibrational freedom (T >> 6y) behaves
as two classical degrees of freedom by contributing RT to the specific



energy. The energy associated with electronic excitation is neglected in
this study. At temperatures below those for molecular dissociation the
electronic energy is small compared to the total energy.

The specific heat at constant volume is defined as

&,

M

Cv

so that

v 1 OEtrans + x Brot 4+ L OEvib
R ™R oT v R\ oT v R oT v

It is apparent from the above equation that each degree of translational and
rotational freedom contributes 1/2 to the total cy/R, independent of temper-
ature, while the vibrational degrees of freedom each contribute between O and
1 to the total cv/R, depending upon the temperature. Thus, cV/R can be
written in terms of a part independent of temperature (CV/R)i and a part due
to vibrations (cV/R)vib which is dependent on temperature so that

c c

(&Y (Y

R R /. R .
i vib

The relation between specific heats, cp - cv = R, 1is used to obtain

c c ‘¢

p v v

R—J‘+<R>.+<R>.
i vib

An ideal-gas value of the ratio of specific heats is defined as

(cp/R);  (cy/R); +1 N
= L =1 + ———
(ev/R)4 (cy/R)4 (ey/R);

~
I
il

so that, finally,



Sy 1, Sx)
R~ 7. - L R/ su

(1)
ﬁz_y_i__+<ﬁ>
Ry -1 R/ip

~ (Cp/R) 7yt (r; - l)(cV/R)vib
7 s (cy/R) 1 + (7i - l)(CV/R)Vj_b y,

The enthalpy is defined as

HER‘[T<%Q>C1T (2)

This definition implies that the enthalpy is zero when the gas is in molec-
ular form at a temperature of absolute zero.

A1 of the thermodynamic properties needed in the analysis to follow
have been written in terms of (cV/R)i and (Cv/R)Vib- Equations for each of
these quantities will now be developed for each of three types of gases.

Monatomic gases.- These gases have no molecular structure since they are
comprised of single atoms. Thus, they have no energy in either rotational or

vibrational degrees of freedom. Their entire energy is included in the three
degrees of translational freedom so that

<Cv>_;
R/. 2
1

%’)vib =0 ) (3)




Polyatomic gases comprised of linear molecules.- The atoms comprising the
molecules of these gases are arranged in a stralght line. Each molecule
possesses three degrees of translational freedom, two degrees of rotational
freedom and one or more degrees of vibrational freedom depending upon the num-
ber of atoms in the molecule. These facts lead to the following results.

(3,353
<>V1b Z()(nm l>2‘ > (%)

1
= 1 —_—
7 T 52

|
-

Polyatomic gases comprised of nonlinear molecules not subject to
internal rotation.- The molecules of these gases differ from the molecules of
the linear molecule gases in that all atoms are not arranged in a straight
line. Under these circumstances, energy can be stored in three, rather than
two, degrees of rotational freedom. Furthermore, the number of vibrational
degrees of freedom is given by n = 3s-6 instead of n = 3s-5 as in the

previous case.
j
CV i
T2

ey == NE L On/T
<—R—>V1b ) <9_T-> <een/T ) l>2 > o)

+
i
W

Mixtures of nonreacting gases.- The thermodynamic properties of a mix-
ture of nonreacting gases are glven by the general relations of equations
(1) and (2) provided the functions cv/R and cV/R vip are suitably
defined. Let




_cRi>i szj <7j_l‘ l>j *Z

J k

k \y: < —
Vi x & LAVE IR

and

Il

Do T (B, T2 (@ T[]

Observe that [(CV/R)Vib]j = 0 and that (7;), = 5/3, (75)y = 7/5, and

(y 75 Z = 4/3. Substituting these values into the equations and letting
(cy/R) vib = u(T) gives
~
Cy
= . =1.5 Xj + 2.5 X + 3.0 X,
3 K 7
Cy
= = u(T) = xkuk(T) + XZuZ(T)
vib
k 1
where
> (6)
an/T

e (T) z<kn> <9kn/T >

GZH/T

e S

uz(T

~—

J



The enthalpy of the gas mixture, from equation (2), is
T /o T Vs
Rf 2)ar = R —2 _ 4+ u(T) | ar
R ys: - 1
o] o] i
7 T
H = <~——> RT + Rf u(T) aT
y. - 1 o

1

jus}
il

Let
1 T
v(T) = ﬁhl: u(T)ar :j{jxkvk(T) +j{: ZVZ(T>
k 1
where
38-5 6 /T 35-86 o /T
v (T) = kn and v, (T) = in
k _5£;7T_—__ 12 6,/
n=1 © -1 o -1
then
7.
H 1
BT - 5. -1 + v(T) (1)

Note that the function v(T) is nothing more than Evip/RT.

The gas constant R for the mixture is given by

R =

812

and the molecular weight m 1is given by

m =ijmj +zkak +ZXZmZ
J k 1

10



Summary of thermodynamic relations for gas mixtures.-

&,

uk(T) -

Il

l.Sij + 2.5Zxk + 3.02}(1
J k 1

—r
(Cv/R) 1

71 + (71 - l)u(T)

1+

Il

1+ (7i - L)u(m)

_ @c)vib =) ) +) (D

k 1

E_.
vib E E
= _ET— = Xka<T> + X2VZ(T)

k 7
), (3
= —_ + -_—
<R i NRugp
38-5 > O3/ T 38-6
), CE) e ® =)
. _
T < an/T :ﬁ 4 1
n=1 e -1 n=1
38=5 S =6
6y, /T 3 /T
=), Tyr s M=)
n=1 © -1 n=1 ¢ % -1

©)
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Figure 1.- Variation of the function u{T)
with temperature for several gases.
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Figure 2.- Variation of the function v(T)
with temperature for several gases.

The functions u(T) and v(T) have
been evaluated for a number of the
gases considered in the compositions of
planetary atmospheres. The results of
these calculations are presented in
figures 1 and 2. Values of the charac-
teristic temperatures of vibration for
a number of gases are given in table I.
With the exception of air, the values
given are consistent with those tabu-
lated in references 4 and 5. The char-
acteristic temperature used for air is
that suggested in reference 3.

One-Dimensional Isentropic Flows

The equations for quantities of
interest in one-dimensional isentropic
flows of nonreacting gas mixtures are
developed in this section. The results
of the preceding section showed that
an equivalent gas having the thermo-
dynamic properties of a specified mix-
ture of gases could be defined. The
equations of this section will be
derived in terms of the thermodynamic
functions of this equivalent gas. The
thermodynamically equivalent gas has a
ratio of specific heats ¥ that is
variable with temperature at high tem-
peratures but which approaches a con-
stant value at low temperatures. Flow
properties for the gas mixtures com-
puted using this constant low tempera-
ture value of specific heat ratio v,
and the ideal gas equations such as
found in reference 6 are called ideal-
gas values. It has been found that
equations for the ratio of quantities
for the real gas to the same quanti-
ties for the ideal gas take particu-
larly simple forms. Thus, equations
are presented for these ratios. Sim-
plified forms of some of these equa-
tions that give results accurate to
within specified limits over limited
ranges of the variables are derived in
a later section.



The equations governing the four unknowns p, p, V, and T can be
written as follows:

\
Mass d(pvA) = O
Entro do _ EX ar _ 0
> (9)
Energy Vdv + dH = O
c c
State p = oRT ; H = H(T) ; —R‘i = TV (1)

The enthalpy and specific heat functions are giver. explicitly by equations (8).

A relation between flow speed and temperature can be obtained directly
by integrating the energy equation. The result is

Y. vy, - 1
V12 = 2RT, 7;—%—I-%:%§ - > ¥ —E§T_" [%% v(Ty) - v(Tl)]}' (10)

1

Both sides of equation (10) can be divided by the square of the sound speed
to obtain the following relation for Mach number

Y 7. -1
SR -t CED Rl -GS S

It is recognized that by rearranging terms in equation (11) and by adding
unity to both sides the following result can be obtained

T, /Ty T, /Ty

(1./T%); <l' ] %_i M12>_

. {l ' 11_7;_1 viTe) i—i Kl ) %) i 7_17;_1 V(Tl)}} (12)

TTl/Tt = 1

I
w|~q
B

13



where use has been made of the fact that

i < y. =1 >
1 1 2
— =1+ ~—=M;
<&t i 2

This function and all other ideal-gas functions employed in this analysis are
given in reference 6. Equation (12) gives the correction to be applied to
the ideal-gas results to account for the real-gas caloric imperfection. This
correction is written in terms of Tl/Tt and either T; or Ty but it can be
related to flow Mach number or speed in the following manner. In a flight
application the static temperature T, would be known and in a wind-tunnel
application the total temperature T would be known so that the independent
variable in equation (12) is the ratio Tl/Tt. By use of the definition of
TTl/Tt’ the following equations for Mach number and speed can be obtained

-1

2 T, /T4

Ml - < /Tt > (13)
: 5/,

Vl - 7- 1/T ) (lh)

The right-hand sides of equations (13) and (14) are functions only of T /Tt
once either T, or Tt is specified. Now that flow speed and Mach number
have been related to temperature it is sufficient to determine each of the
remaining isentropic flow quantities in terms of the static-to-total tempera-
ture ratio Tl/Tt and either static or total temperature.

An equation for the real-gas correction to static-to-total density ratio
is obtained by integrating the entropy equation. The result is

71-1 Ty
< > epr/\ u(T) ar
T
Ty

Now, recognizing that

e, - @)

1L



and defining
p, /Py
T = —
p,/ Py

allows the real-gas correction to the density ratio to be written

1

_ 71i-1 ar
To, /04 T <%T1/Tt * exph/; u(T) 7

The integral in the equation above can be evaluated analytically. The result
is

where

k
s [ ) l

e 5 ey @) |
N ) ] (15)
vae [ 1

I @eifﬁ/f j e

- .

The functions wk(T) and w,(T) need be evaluated only once for each pure gas
after which the function w(T) for any possible mixture of the pure gases can
be formed. For convenience, the w(T) function has been evaluated for a

15



10 o —_ —— 7T number of pure gases and the results

- are presented in figure 3. TFinally,
s / the real-gas correction to the static-
7
CHa / to-total density ratio is written
8 —‘ A
// -
7 / . ] <} ‘)71'1 e[w(Tl) - w(Ty) ]
€Oz Py/Py T1/Ty,
6
7 (16)
R
w(T) 5 // v / NH3-
/1/ The real-gas correction to the
4 iy static-to-total pressure ratio is
Y obtained in terms of the temperature
3 ,/, and density corrections by using the
/7 equation of state. The result is
H,0
2 —7 t , _ pl/P‘t B <T ><T / >
/ 1 =7 N~ T p./o
/U TP PR (e, T NP
(/ H 1 f”’;iﬁ‘
/| 2 T
7 | : -]
S 75
o} 400 800 1200 1600 2000 2400 2800
Temperature, °K yi-l [W<Tl) - W<T‘t)]
Figure 3.- Variation of the function w(T) —-<:TqEL/Tt;> €
with temperature for several gases. (l?)

The real-gas correction to the dynamic-to-total pressure ratio is
obtained as follows

a,/py 0, V1 5/py 7, (py /000, 2

qu/pt = (ql/pt)i - (plvlz/Pt)i B 7i(pl/pt)i(M12)i

~
]

T /py Ty TRy /Py

An equation for the real-gas correction to the flow area ratio A/A* is
developed from the mass continuity equation. Integrating the first of
equations (9) gives

e Vih = 0, Vihy

where the * denotes conditions evaluated at the sonic throat. Then,

16



but

<¥g> _ (ey/ey)y
Ax 1 (Dl/pt)i
so that

A /Ay

TA/A* = (A/A*)i (19)

Real-gas corrections to other flow quantities can be formed using
combinations of those presented.

Plane Shock Flows

The equations derived in this section relate flow guantities on either
side of plane shock waves. As in the preceding section, the equations are
cast 1n terms of the thermodynamic functions of the equivalent single gas
having the exact properties of any specified mixture of gases.

The equations governing the four unknowns Pyy Py V5, and Ty Dbehind
normal shock waves can be written as follows:

\
Mass plvl = pVs
2 _ 2
Momentum p, + prl = p, + p2V2
) (20)
Energy H, + % V12 = Hy + % V22
State p = pRT ; H = H(T)

The enthalpy function is given explicitly by equations (8).

17



A number of approaches to the derivation of the shock relations are valid
although in some the algebra becomes cumbersome. It will be shown that the
density and pressure relations contain terms involving the static temperature
behind the shock sc a logical approach would be to first derive the relation
for static temperature ratio across a shock. In the interest of simplicity,
however, the density and pressure equations are derived first and then are
combined to obtain the temperature equation.

Manipulation of equations (20) results in the following quadratic
equation for the density ratio pl/p2

2

71 + 1 Py Py
MG e s 5;> t 73
2
7. My T
1 2 1
2 Oy -0y - ) 2 | (m) - 2 (e | = 0

This equation has the solution

T T
2 2
75 (1 + 7 M®) - J/(lehg - y)T F2(y5% - L)y, M® T [V(TE) - Ti V(Tl)]

Py
= 71M12(7i + 1)
(21)
Let
2 2 2 2 To Ty
n=(r Mm% - 7;)" + 20" - L)y M oy v(T,) - T v(T,) (22)
and note that
2
<% > (1 + 74 )M
P 2w (g - 1w
then
2y + (y. - L)y. 4=
o_/p 4 7 7, M
L Wl (23)

.
P/ Py

- (oafey);  75(1 + 71Mié) - JT

18



The equation for the static pressure ratio pe/p1 is obtained by first
noting that the momentum equation can be written

b P
2214y 2 < - —i> (24)
Py 1 fa

Substitution of equation (21) for pl/p2 into equation (24) gives

2
p, (+ym®) g

P1 (')’i + l)
Now
(gg B EViMiE = (7i - 1)
P/
6! <7i + l)
so that

p./D, (1 + 71M12) + 0
T = =
P./Py (po/Py)s 2702 - (ry - 1)

(25)

The real-gas correction to the static temperature ratio is obtalned by
using the thermal equation of state and the preceding equations for density
and pressure. The result is

. _ TE/Tl _ ?iK} f 71M12)2 -7 +,K7i - l)(l + 71M12>Vﬁ- (26)
Ta/Ta = (15/T,) 71[27iM12 - (73 - l)J [(71 - M=+ 2]

An iterative procedure is required to solve equation (26) for the correction
to the static temperature ratio since the function 17 contains the unknown

Tz. A simple, rapidly converging, method requires writing Tz in fterms of

the correction factor as follows:

T <?2 T
= T, _—
2 TE/Tl Tl i 1

Then, set equal to unity to obtain a first estimate of Ts. This

T

To/T,

valve of Tz can be used to obtain a first estimate of n which, in turn,

allows the calculation of Tp + The new value of Tmp /T is then used to
o/Ty 2/1T1

19



provide a second estimate of Tp. The iteration is complete when the differ-
ence between successive values of TT2/T1 is within acceptable limits. It is

shown in the section on approximations to the equations that the iteration can
be avoided completely if results accurate to within several percent are
acceptable.

The real-gas correction to the ratio of flow speeds across a normal shock
is developed from the mass, momentum, and state equations.

Vo 1 < p%)
= = 1L+ y M2 - — 27
vy 71M12 7 P, (27)
The ideal-gas equation for (Vg/Vl)i is
<v> 2+ Mm=(y; - 1) (06)
i M12(7i + 1)

Combining equations (27) and (28) and substituting a previous relation for
pg/pl gives
2
Va/V, yi (L + oy M%) -0

-:_ = 2
Wa/V, T (Va/Va)i 2y, + 7aMy2(y; - 1) (29)

A1l of the remaining normal shock quantities can be developed from the
results given above. The real-gas correction to the sound speed is obtained

as follows:

an _ (7212
8y 7, Ta
Tz
al 5 Tl
S0
a2/31 75
= = 0
2/a1 (az/a4 TE/T 74 (30)

20



The Mach number ratio is given by inspection

. _ M2/Ml _ TVg/Vl _ 1 (3]_)
Mz /My (Me/Ml)i Tap/ay (}pg/p?)(:fag/a¥>

The ratios of total conditions across normal shocks are given by the
identities:

. _ ptz/ptl _ (}02/01:><}p1/p£>
ptg/ptl - (ptz/ph)i Tpg/ Py
> (32)
B ptz/ptl B
"oy /Py, C;;;?;;:jf = Tot2/ptl
+ J

The latter of equations (32) is obtained by making use of the fact that total
temperature is conserved across the shock wave.

The equations developed for normal shock waves are also applicable to
the study of oblique shock flows. Values of the ratios T, /0.5 To_/D. >
2/ 2/ 1

Ty 1,2 88 Tap/g, TOr oblique shock waves are given by equations (23), (25),

(26), and (30), respectively, provided M; sin B is used instead of M; and
the static temperature upstream of the oblique shock wave is the same as
upstream of the normal shock wave. The flow turning angle © 1s related to
the shock wave angle by the following equation obtained from considera-
tion of mass conservation

2 _. 2
tan(p - 5) 1 2 + (7i - 1)M;= sin® B

1
= = (33)
R P P2\ Toy/e, (g T LMT sin® g
02/01 N 5

The Mach number immediately downstream of an oblique shock wave can be
determined from

21



Me Py omn 1 _ (T2/72); (o, /00); (31)

M, e, a2 sin(p - B) <Tp2/pl> <Ta2/al> sin(p - 8)

In the latter two equations the density, temperature, and sound-speed ratios
are those corresponding to the upstream Mach number M; and the shock wave
angle R. When M, 1is determined from equation (3&), the remaining normal
shock expressions, equations (32), can be applied to obligue shock flows.

Approximate Results

Simplifications to a number of the equations of the preceding sections
are suggested by a cursory analysis. It will be shown for isentropic flows
that substantial simplifications can be made, without great loss in accuracy,
when the static temperature is relatively low (room temperature or less).
Fortunately, this condition exists in a number of practical problems. For
example, in most supersonic wind-tunnel applications the stagnation tempera-
ture is so limited that the test section static temperature is nearly always
of the order of room temperature or less. Also, in the flight application,
the static temperature of the ambient atmosphere at altitudes sufficiently
high for practical superscnic flight 1s generally low. It will also be shown
that the equations for plane shock-wave flows can be simplified by imposing
the additional condition that V1%/RT; >> 1 which implies the thermal energy
of the gas to be much less than the kinetic energy of the flow. In addition
to the simplifications, some rules to indicate the ranges of applicability of
the approximate equations also will be derived.

Isentropic flows.- Consider first equation (12) for the real -gas correc-
tion to the static-to-total temperature ratio. When the static temperature
is low then +v(T,) -» O. For these conditions equation (12) takes the form

71 g -1
T, /Ty ® ;I [l + ——;;—~ V(Tt>} (35)

A significant result deduced from this equation is the fact that when the
static temperature is low it ceases to be a variable in the problem. This is
made evident by recalling that the value of 7. approaches the value of 75
as the static temperature is lowered. Under these circumstances yi/yl -1
and the correction to the temperature ratio is a constant for a constant total
temperature flow such as found in a wind tunnel. The value approached by
TTl/Tt asymptotically as Ti1 —» O while T, i1s held constant is given by
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?Tl/Tt = — = v(Ty) (36)

Substitution of equation (36) into equation (35) gives

71~
0y /Ty Ty T /Ty (37)

An estimate of the error introduced by using equation (37) for Tp /Tt
1

in place of the more complicated, but exact, equation (12) can now be made.

Define

T /Ty T TTl/Tt
fT = - - - —
T TTl/Tt

as being the fractional error. Substituting from equation (37) gives

Solving for 7, in terms of the fractional error leads to

€T
YT T (36)

Equation (38) gives the value of 7, corresponding to a given fractional
error in TTl/Tt. This value of 7, corresponds to a specific value of
static temperature which can be determined from the equation relating 7, to

temperature (egs. (8)). Once static temperature is determined then equations
(13) and (14) give the flow Mach number and flow speed, respectively, above
which equation (37) can be used for calculating TTl/Tt without incurring

an error larger than f Results of sample calculations illustrating the

TP ®
real-gas temperature ratio correction for pure carbon dioxide are presented
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in figure 4. The curves depicting exact results were obtained from equations
(12) and (13). The approximate results given by equations (37) and (13) are
shown to agree closely with the exact curves for Mach numbers where the static
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= e Approx. equation (36)
—— == === Approx. equations (38),(B8) and (i13)
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Mach number, M

Figure L.~ Comparisons of exact and approximate results for the real gas correction to the
static-to-total temperature ratio in an isentropic flow of carbon dioxide.

The asymptotic result given simply by equation (36) is
The predicted and the exact lines of constant
are also shown. Note

temperature is low.
shown to be essgentially exact.
percent deviation from the asymptotic values of TTl/Tt
that the theory is conservative in predicting the Mach number for which
approximate results deviate a specified percentage from the exact results.
The same general procedure used to estimate the range of applicability of the
simplified equation for the real-gas correction to the static-to-total tem-
perature ratio can be used to provide similar estimates for the corrections

to the other isentropic flow parameters.

In the case of the real-gas correction to the static-to-total density

T
ratio, it is observed that the function ew( 1) in equation (16) approaches
unity as the static temperature T; becomes low so that it i1s convenient to

define .

— = -1 _-w(T
To, /oy, = o, /T, 7 =% WT) (39)
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Equation (39) gives the value approached by

becomes progressively lower while the total
Using equation (39), equation (16)

Tl/T 7 -1
To /Qt /Tt
Ty

= eW(Tl) (
t

Tpl/pt asymptotically as T

temperature is held constant.

can be rewritten as follows

An estimate of the flow Mach number for which a given fractional error is
incurred by using the simpler equation, equation (39), in place of the exact

result of equation (40) can now be made.

given by equation (37)
is dropped so that

is substituted into equation (LO)

The approximation for TTl/T
t

w(T

and the term e

1
74 7i_1
"o ree TS T/

Now, write

G
71 7/l

Expanding the right side in a Taylor series

(

R

Sl

and dropping higher order terms

gives
1
Y \7 -1 y .
B ) <
1 7i m I\
Define the fractional error as
T _ T
. P/ Py P/ Py
T~ —_—
© To, /oy
and substitute equations (41) and (42) into this definition to get

L
y4 - 1

f =
To

1

@

1

)

(40)

1)

k1)

L2)
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Solving for v, gives

Y

1
101+ (71 - 1)pr (£3)

7

Equation (43) gives the value of specific heat ratio corresponding to a given
fractional error in Tp /p resulting from using the simplified result of
1/t

equation (39). By methods discussed previously, the value of 7. given by
equation (43) can be related to static temperature and, in turn, to either

Mach number or flow speed.

An approach similar to that used above gives the following ratio of real-
gas correction to the static-to-total pressure that is approached as the
static temperature T, 1s diminished and the total temperature held constant

74

Y.-1

—T_Pl/Pt - <FT1/Tt> Py (4h)

so that

1/Tt (T1)=
Tp, /oy T <;T I, D, /o, (45)

The fractional error defined by

T /ey - o /P,

fr

Il

P -fpl/pt

can be written

Ir

N

so that the value of the specific heat ratio corresponding to a given frac-
tional error in Tpl/pt resulting from using the simplified result of

equation (L4i4) is given by

y = r (46)
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Plane shock flows.- Two levels of simplification to the plane shock
relations are considered. The first of these eliminates the need for the
iterative solution across the shock wave. The second involves obtaining the
equations for the asymptotic values of the real-gas corrections approached as
the static temperature is reduced while the total temperature is held constant.

The equations for the plane shock flows are written in terms of the func-
tion n defined by equation (22). Evaluation of this function requires a
knowledge of the static temperature downstream of the shock wave. This tem-
perature is not known a priori so that an iterative solution of equation (26)
for TTE/Tl is required in order to establish a value for T, and subse-

quently mn. This difficulty can be circumvented, with only small loss in
accuracy, by reccgnizing that To 1s never more than a few percent different
from the total temperature and that the n function is not very sensitive to
errors in Tz of this order. Because of this, Tp can be replaced by Ty

in the equation for mn. A comparison of exact results for the real-gas cor-
rection to the static temperature ratio across a normal shock wave in pure
COz to those obtained using the simplified n function is made in figure 5.
The differences between the exact and the approximate results are shown to be
small.

Exact

— — — — — Approximote (set Tp=Ty in eq. (22))

T/ Ty
(T/T)%

T =
T2/T,

Ty =1000° K

e e —
5L ! ! i I I | ! !
I 3 5 7 9 1" 13 15 17

Mach number, M

Figure 5.- Comparisons of exact and epproximate results for the real gas correction to the
static temperature ratio across a normal shock in carbon dioxide.

The results of figure 5 also show that the real-gas correction to the
static temperature ratio approaches an asymptote as Mach number is increased.
This behavior is typical of all of the real-gas corrections to the shock
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varameters as it is for the corrections to the isentropic flow quantities.
Equations for asymptotic values of all the functions can be readily obtained
after finding the form of the 17 function for T; - O and Tp = Ty. Under
these circumstances, 7y, - 7; 80 that

_ L. (F 1)
M= 72 M* |y ® -
Ty /Ty

Substituting this relation for 7 into egquations (23), (25), (26), and (29)
and by dropping terms of order l/ylMlg = RTl/Vl2 gives the following
equations for the asymptotic values of density, pressure, temperature, and
speed ratios, respectively.

- (7i - 1)
To,/p, = IR (47)
2 i~
7]_ - 71 - =
Tl/Tt
- _ !__ > (712 - l)
/e, SB[V - A (48)
t
(y. + 1) (v, - 1)
— 1 1 2 i
T = = — - Y + Y - (l{.9)
oty " 2N Fy gy T T T/
—_ 1 2 (712 -1) ( o
T = —— Y. - S
VZ/V]‘ (7i - l) 71 71 TTl/Tt 5 )

The asymptotic value of the real-gas correction to the sound speed ratio is
obtained from equation (30). The result is

—_ _ 7t
Tas/ay © / TTo /Ty ;; (51)
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Equations for the asymptotic values of the corrections to the remaining
parameters are given by combinations of equations (47) through (51).

DISCUSSION

Using the equations developed in this study it is a simple matter to
determine the effects of changing gas composition on quantities of interest
in isentropic and plane shock flows. Some sample comparisons of the behav-
ior of a number of gases will be made and discussed.

Consider first the situation of a body flying in an atmosphere. The
variation of total temperature with flight Mach number and flight speed for a
number of pure gases is shown in figure 6. These results were obtained by

means of equations (12), (13), and (14) and are for an arbitrarily chosen
anbient temperature of 200° K. It is shown in figure 6(a) that changes in
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(a) Variation of total temperature with Mach number.

Figure 6.- Effect of gas composition on the variation of total temperature with Mach nuumber
and speed; T, = 200° K.
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gas composition have large effects on total temperature when results are
compared at the same Mach number. However, as shown in figure 6(b), the com-
parisons of results for the various gases are considerably different when made

NERE ANy, /

LT l% “ifHf o Z
. /- p
2000 l W / / /ZY,_Hi r ('Ha
[/ 1) %
% a0 a, v
24 /
/v %
/&4 )
800 / // T = 200°K
//
400 / _
A —

Speed, V|, km/sec

(b) Variation of total temperature with speed.

Figure 6.- Concluded.

at the same speed. For example, the difference between the total %emperature
in carbon dioxide and that in nitrogen at comparable Mach numbers grows with
increasing Mach number to exceed 800° X while the difference never exceeds
about 150° K when evaluated at comparable speeds. In contrast to this result
the differences between the curves for helium and air are larger when compared
at the same speed than when compared at the same Mach number. In addition to
magnitudes, tThe algebraic sign of the difference is not always the same for
the results presented as a function of Mach number as for the results pre-
sented as a function of specd. Considerations of this sort indicate that when
comparing aerodynamic quantities for various gas compositions it will be nec-
egssary to exercise care in drawing conclusions since the conclusions can be
strongly dependent upon the basis of the comparisons.

As a second illustration of the aerodynamic behavior of various gases
predictable by the equations derived in this analysis, consider an application
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Figure 7.- Effect of gas composition on Mach Figure 8.- Effect of gas composition on speed
number oObtainable in a wind tunnel. obtainable in a wind tunnel.

to wind-tunnel flows. In many wind tunnels the total or reservoir temperature
is held constant during a test as opposed to the flight case where the ambient
temperature is fixed. For a total temperature of 2500° K, the ratio of flow
Mach number obtainable in each of a number of gases to Mach number obtainable
in air is presented in figure 7 as a function of air Mach number. Results
presented in this form readily show estimates of the performance capabilities
of presently operating air facilities when operated with planetary gas mix-
tures. It is apparent from the results of figure 7 that the flow Mach number
obtainable in a given nozzle is strongly dependent on gas composition. A noz-
zle designed to produce a given Mach number in air will produce higher Mach
number flows of gases having a smaller ratio of internal energy to total
energy than air and lower Mach number flows of gases having a larger ratio of
internal energy to total energy than air for a given reservoir temperature.

The ratio of wind-tunnel flow speeds obtainable with each of a number of
gases to that obtainable with air is shown in figure 8 as a function of air
Mach number for a total temperature of 25000 K. The relationships between the
various gases in terms of flow speed obtainable in a wind tunnel designed for
a given Mach number in air are quite different from those shown in figure 7 in
terms of Mach number. All the differences between the comparisons illustrated
in figure 7 and those shown in figure 8 are due to differences in sound speed
in the various gases.
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As a final comparison of the aerodynamic behavior of a number of possible
constituents of planetary atmospheres, consider the stagnation pressure coef-
ficient. This quantity is of particular interest since a number of theories
for predicting pressures and forces on entry bodies relate the predictions to
the stagnation point pressure. The stagnation point pressure coefficients for
a number of gases normalized to that for real air are presented as a function
of flight speed in figure 9. It is interesting to note that while many of the
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Figure 9.- Effect of gas composition on staghation point pressure coefficient; T, = 200° X.

quantities characterizing aserodynamic flows are very sensitive to gas composi-
tion, the stagnation pressure coefficients for a number of gases differ by

only a few percent from one gas to another.

CONCLUDING REMARKS

Equations for aerodynamic cquantities of interest in isentropic one-
dimensional flows and for properties across plane shock waves in arbitrary
mixtures of undissociated planetary gases have been derived. It was shown
that the equations could be cast in forms not prohibitively complicated by
making the following principal assumptions for the gas model: (a) all gas
components of a mixture are thermally perfect so as to be governed by the
perfect gas law p = pRT; (b) molecular vibrations behave like harmonic
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oscillators with no coupling between rotational and vibrational degrees of
freedom; and (c) electronic energy is negligible compared to the total energy.
Simplified equations giving approximate results over more limited ranges of
the variables were also obtained along with estimates of the error introduced
by the approximations.

Various uses for the equations were demonstrated by making sample compar-
isons of the aerodynamic behavior of a number of gases. In one comparison,
estimates of the flow Mach number and speed capabilities of a wind tunnel
operated with a number of pure gases in terms of its performance in air were
presented. It was shown for the same reservoir temperature that a nozzle
designed to produce a given Mach number in air will produce higher Mach number
flows of gases having a smaller ratio of internal energy to total energy, at a
given temperature, than air and lower Mach number flows of gases having a
larger ratio of internal energy to total energy, at a given temperature, than
air. It is also shown that while some of the quantities characterizing aero-
dynamic flows are very sensitive to gas composition, the stagnation pressure
coefficients for a number of gases differ by only a few percent from one gas
to another.

Ames Research Center
National Aeronautics and Space Administration
Moffett Field, Calif., Nov. 13, 1964
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TABLE T

.- CONSTANTS FOR SELECTED GASES

(a) Linear molecule gases

‘ Vibrational energy
Gas Mble?ular constants, 6p, °K
weight (1)
co 28 3121.85
CO2 Lk 959.9(2), 1928, 3379.5
Ho 2 6322.5
NO 30 2738. 44
No 28 339k.3
N0 Ly 845.8(2), 1853.1, 3218
Oz 32 227335
alr 29 3055.5
(b) Nonlinear molecule gases
. Vibrational energy
Gas Mole?alar constants, Op, oK
weight (1)
CHy 16 1879(3), 2195(2), k192.1, 43hk.7(3)
H=0 18 2294 .4, 5253, 5L02.7
1340.08, 1392.58, 2341.6,
NHz 7 M798f7, 4801, 491l

INumber in parentheses denotes the number of degrees of

freedom to which the constant it follows applies.
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